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In this article we consider a class of functions, called D-polynomials, which are
contained in the null space of certain second order differential operators with con-
stant coefficients. The class of splines generated by these D-polynomials strictly
contains the polynomial, trigonometric, and hyperbolic splines. The main objective
of this paper is to present a unified theory of this class of splines via the concept
of a polar form. By systematically employing polar forms, we extend essentially all
of the well-known results concerning polynomial splines. Among other topics, we
introduce a Schoenberg operator and define control curves for these splines. We
also examine the knot insertion and subdivision algorithms and prove that the sub-
division schemes converge quadratically. � 1996 Academic Press, Inc.

1. Introduction

In recent years polar forms have been widely used to describe various
properties of polynomial splines, including algorithms for their evaluation
and numerical manipulation (see e.g., [4, 9, 15, 20, 21]).

In the past a number of non-polynomial splines have been introduced
that are known to share many excellent properties with the polynomial
splines. In particular, trigonometric splines introduced by Schoenberg in
1964 [16] and later investigated by, among others, Lyche and Winther
[14], have turned out to have a similar structure. In addition to other
desirable properties, certain recurrence relations have been discovered for
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their stable evaluation. Analogous results have also been established for
hyperbolic splines, introduced by Schumaker in 1983 [19]. In this article
we consider a class of splines which contain the polynomial, trigonometric
and hyperbolic splines as a special case.

The main objective of the paper is to present a unified theory of this class
of splines via the concept of a polar form, introduced in [10]. By
systematically employing polar forms, we extend essentially all of the
well-known results concerning polynomial splines. While many of the
generalizations are straightforward, a number of them seem to be new. The
paper generalizes and is in the spirit of the results found in [9, 15, 21] for
the polynomial case and [1, 11, 12] for the trigonometric case.

We begin the paper by considering the null space of a second order con-
stant coefficient differential operator and the unique solution to an initial-
value problem. Using this function, we generate a space of D-polynomials
and then construct a basis for this space. In Section 3 we introduce the
D-polar form for a D-polynomial and in Section 4 we develop the
Bernstein�Be� zier theory for these polynomials. The spline function theory
is developed in Section 5, and in Section 6 we consider knot insertion
algorithms. Subdivision algorithms are considered in Section 7, and we
complete the article by presenting an illustrative example.

2. D-Polynomials

Throughout the paper D will denote a fixed two-dimensional space of
real-valued functions which is the null space of an operator L of the form

L :=D2+#D+$, #, $ # R. (2.1)

Moreover, d # D will be the unique solution of the intial-value problem

Ld=0, d(0)=0, Dd(0)=1.

It follows that D=span[d( }&t), t # R], the finite linear span of the set
[d( }&t), t # R]. Hence D is translation invariant i.e., if f ( } ) # D then for
every t # R, f ( }&t) # D. In fact, any translation invariant two-dimensional
space of continuous real-valued functions must be the null space of a
differential operator of the form (2.1) [10].

Next, let

Dn :=span[d n( }&t), t # R]=span[gn, g # D], n�0.

We will call elements of this space D-polynomials of degree n. Clearly the
space D0 consists of constant functions and D1=D. In general, the spaces
Dn are not nested (i.e., Dn/3 Dn+1).
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Remark 2.1 (Exponential polynomials with equidistant exponents). Let
L=(D&+)(D&&), +, & # C. By the definition of Dn , every function in this
space can be expressed as a (complex) linear combination of the functions

e[(n&i) ++i&]x, i=0, ..., n,

if +{&, or the functions

xien+x, i=0, ..., n,

if +=&. In particular,

d(x)={(e+x&e&x)�(+&&),
xe+x,

+{&
+=&.

Therefore the exponents form an arithmetic progression with the difference
equal to (&&+)x. Thus D-polynomials can be viewed as exponential
polynomials with equidistant exponents. Such functions have also been
considered in [13].

Remark 2.2 (The symmetric case #=0). If #=0 i.e., L is self-adjoint,
then D is symmetric in the sense that f ( } ) # D implies f (&} ) # D. In this
case the function d is given by

sin(- $ x)�- $, $>0

d(x)={x, $=0

sinh(- &$ x)�- &$, $<0,

which is an antisymmetric function (i.e., d(x)=&d(&x)). If, in addition
$=0 then Dn=6n , n�0, where 6n is the space of algebraic polynomials of
order n+1 (or degree �n). On the other hand, if $=1 then Dn=Tn ,
where

Tn :={
span[1, sin(2x), cos(2x), sin(4x), cos(4x), ..., sin(nx), cos(nx)],

n even,
spn[sin(x), cos(x), sin(3x), cos(3x), ..., sin(nx), cos(nx)],

n odd,

is the usual space of trigonometric polynomials of order n+1.

We will end this section by constructing a basis for Dn . Let a, b # R be
such that a<b and d(b&a){0 (and therefore also d(a&b){0).
Moreover, let

b0(x) :=
d(x&b)
d(a&b)

, b1(x) :=
d(x&a)
d(b&a)

, x # R. (2.2)
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Since D is translation invariant, the functions b0 and b1 both belong to D.
In addition, they are linearly independent since

b0(a)=1, b0(b)=0, b1(a)=0, b1(b)=1. (2.3)

Theorem 2.3 (Basis for Dn). The functions

Bn
i (x) :=\n

i+ bn&i
0 (x) bi

1(x), x # R, i=0, ..., n,

form a basis for Dn .

Proof. From the definition of Dn and the fact that dim D=2, it is clear
that dim Dn�n+1. Thus it will be sufficient to show that the Bn

i # Dn ,
i=0, ..., n, are linearly independent. Proceeding by induction on n, the
assertion is true for n=0, 1. For n>1, let

:
n

i=0

ciBn
i (x)=0, for all x # R.

In particular, this equality must hold for x=b, which gives cn=0.
However, the remaining sum is now a product of the function b0 with a
linear combination of the functions Bn&1

i , i=0, ..., n&1, which are linearly
independent by the induction hypothesis. Hence the remaining coefficients
ci , i=0, ..., n&1, must also be zero. K

3. Polar Forms

In this section we recall the definition of a polar form for functions
in Dn [10].

Theorem 3.1 (Polar form). For every F # Dn , n�0, there exists a unique
function f (x1 , ..., xn) of n variables, called a D-polar form of F, satisfying the
following properties:

(a) f is symmetric with respect to x1 , ..., xn ,

(b) f is equal to F on the diagonal i.e., f (x, ..., x)=F(x), for all x # R,

(c) for all m�1 and all real numbers y, y1 , ..., ym , the function f is
D-affine i.e., f satisfies in each variable the relation

f (. . . , y, . . .)= :
m

i=1

*i f (. . . , yi , . . .), (3.1)
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whenever the numbers *1 , ..., *m are chosen so that

g( y )= :
m

i=1

*i g( yi ), for all g # D. (3.2)

Proof. A polar form bn
i of Bn

i is given by

bn
i (x1 , ..., xn)=

( n
i )

n!
:
?

b0(x?(1)) } } } b0(x?(n&i )) b1(x?(n&i+1)) } } } b1(x?(n)),

(3.3)

where the sum in (3.3) is taken over all permutations ?: [1, ..., n] �
[1, ..., n]. This is easily proved by verifying all three defining properties
(a)�(c). Next, since the functions Bn

i , i=0, ..., n, form a basis for Dn , we
conclude that the function

f (x1 , ..., xn)= :
n

i=0

cibn
i (x1 , ..., xn), c0 , ..., cn # R,

is a polar form of the function F # Dn , given by

F(x)= :
n

i=0

cib n
i (x, ..., x)= :

n

i=0

ci Bn
i (x).

As for the uniqueness of this representation, it suffices to notice that the
n-variate functions bn

i (x1 , ..., xn), i=0, ..., n, are linearly independent since
they are linearly independent on the diagonal x1= } } } =xn=x. K

In the following we prove that (3.1) may be replaced by a three-term
``recurrence'' relation.

Theorem 3.2 (Three-term recurrence relation). A function f is D-affine
if and only if it satisfies the relation

f ( . . . , y, . . . )=
d( y&y2)
d( y1&y2)

f ( . . . , y1 , . . . )+
d( y&y1)
d( y2&y1)

f ( . . . , y2 , . . . ), (3.4)

for all y, y1 , y2 # R, such that d( y2&y1){0.

Proof. The proof of (3.4) is immediate by setting m=2 in (3.1) and by
observing that d( y2&y1){0 implies

g( y )=
d( y&y2)
d( y1&y2)

g( y1)+
d( y&y1)
d( y2&y1)

g( y2), (3.5)

for every y # R and every g # D.
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To prove the converse, fix y, y1 , ..., ym # R and let *1 , ..., *m satisfy (3.2).
Moreover, suppose that u1 , u2 # R are such that d(u2&u1){0. Then
by (3.4),

f ( . . . , y, . . . )=
d( y&u2)
d(u1&u2)

f ( . . . , u1 , . . . )

+
d( y&u1)
d(u2&u1)

f ( . . . , u2 , . . . )

= :
m

i=1

*i \d( yi&u2)
d(u1&u2)

f ( . . . , u1 , . . . )+
d( yi&u1)
d(u2&u1)

f ( . . . , u2 , . . . )+
= :

m

i=1

*i f ( . . . , yi , . . . ),

proving (3.1). K

A consequence of Theorem 3.2 is that D-affinity means that in each
variable the polar form of a function in Dn belongs to the space D. We will
denote functions in Dn , n�2, by capital letters and their polar forms by the
corresponding small case letters. For n=1, small case letters will be used
since the polar form of a function from Dn is the function itself. From this
point on, we will assume that n�1 to avoid having to constantly list the
exceptional and uninteresting case n=0.

4. Bernstein�Be� zier Representation

In this section we will develop a Bernstein�Be� zier theory for the space Dn .
We call the functions Bn

i , i=0, ..., n, defined in Theorem 2.3, the Bernstein
basis polynomials of degree n corresponding to D or simply B-polynomials.
Clearly for Dn=6n , these are the classical Bernstein basis polynomials
whereas in the case Dn=Tn , we obtain the circular Bernstein basis poly-
nomials considered in [1].

Theorem 4.1 (Polar form of Bn
i ). For j=0, ..., n, let

tj :=(a, ..., a
n&j

, b, ..., b
j

).

The polar form bn
i of Bn

i satisfies

bn
i (tj )=$ij , i, j=0, ..., n.
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Proof. By (2.3), the summands in (3.3) are nonzero for (x1 , ..., xn)=tj

only if x?(1)= } } } =x?(n&i )=a, x?(n&i+1)= } } } =x?(n)=b. Hence bn
i equals

zero unless i=j. In that case, the number of nonzero summands in (3.3) is
n!�( n

i ) and so bn
i (tj )=1. K

Corollary 4.2 (Dual basis for Dn). With tj as in Theorem 4.1, the
functionals +j : Dn � R, j=0, ..., n, defined by

+j F :=f (tj ),

where f is the polar form of F # Dn , form a dual basis for [Bn
i ]n

i=0 i.e.,

+j Bn
i =$ij , i, j=0, ..., n.

From Corollary 4.2 it follows, as in the algebraic polynomial case, that
the coefficients ci , i=0, ..., n, of a polynomial F # Dn represented in the
B-form

F(x) := :
n

i=0

ciBn
i (x), x # R, (4.1)

can be obtained by evaluating its polar form f at the points ti i.e.,

ci=f (ti ). (4.2)

Next we generalize a result found in [15] for algebraic polynomial polar
forms.

Corollary 4.3 (Polar interpolation). Let ci # R, i=0, ..., n. There
exists a unique function F # Dn whose polar form f satisfies

f (ti )=ci , i=0, ..., n.

Proof. Let F be of the form (4.1) and let f be the polar form of F, then

+i F=f (ti )=ci .

The uniqueness follows from the linear independence of the B-polyno-
mials. K

It is also possible to define a Bernstein operator associated with the
space Dn . To that end, let

!i :=a+i
b&a

n
, i=0, ..., n.

We define

Ln :=span[d(n } &t), t # R]=span[g(n } ), g # D]. (4.3)
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In particular, L1=D. Similarly to D, the space Ln is a two-dimensional
translation invariant space. Unlike D, however, Ln is a subspace of Dn for
all n. As the next result shows, Ln can be considered as an analog of the
space of linear functions.

Corollary 4.4 (Bernstein operator). The operator

BnF(x) := :
n

i=0

F(!i ) Bn
i (x),

defined on bounded real-valued functions on R, reproduces functions in Ln

i.e.,

BnF#F, for all F # Ln .

Proof. On account of Corollary 4.2, it suffices to prove that for all
F # Ln ,

f (ti )=F(!i), i=0, ..., n. (4.4)

Notice that the polar form f of a function F # Ln is given by

f (x1 , ..., xn)=F \
�n

j=1 xj

n + . (4.5)

This is because the translation invariance of Ln implies that the right hand
side of (4.5) is, in each argument, a function in D. By the defintion of
the !i , this readily proves (4.4). K

Remark 4.5. B-polynomials do not form a partition of unity unless
Dn=6n . Thus BnF will not necessarily converge to F as n goes to infinity,
which is in contrast to the classical situation.

The following algorithm enables one to evaluate polar forms recursively.

Algorithm 4.6 (Evaluation algorithm for polar forms).

Let f be the polar form of a function F # Dn .

Set c0
i :=ci , i=0, ..., n,

For k=1 to n,

For i=k to n, (4.6)

ck
i :=b0(xk) ck&1

i&1 +b1(xk) ck&1
i .

Then f (x1 , ..., xn)=cn
n .

88 GONSOR AND NEAMTU



File: 640J 295609 . By:CV . Date:24:07:96 . Time:09:56 LOP8M. V8.0. Page 01:01
Codes: 3097 Signs: 1706 . Length: 45 pic 0 pts, 190 mm

Proof. The assertion follows from the identity

ck
i =f (x1 , ..., xk , a, ..., a

n&i

, b, ..., b
i&k

),

which is a consequence of (3.4) applied to y1=a, y2=b. K

Remark 4.7. (a) By setting x1= } } } =xn=x in the above algorithm
we obtain an analog of the de Casteljau algorithm for evaluating polyno-
mials in the B-form at a point x.

(b) Algorithm 4.6 can also be utilized to convert polynomials in the
B-form from one interval to another. In particular, let ci , c� i , i=0, ..., n, be
the coefficients of a polynomial F # Dn associated with the intervals [a, b]
and [a� , b� ] respectively. Thus by (4.2),

c� i=f (a� , ..., a�
n&i

, b� , ..., b�
i

),

and hence Algorithm 4.6 can be applied with x1= } } } =xn&i=a� ,
xn&i+1= } } } =xn=b� .

(c) Specializing (b) to the intervals [a, b], [a, s] and the intervals
[a, b], [s, b] leads to a subdivision algorithm for a function F # Dn . Alter-
natively, the coefficients associated with the refined polynomials on the two
intervals [a, s] and [s, b] can be read off of the array produced by the de
Casteljau algorithm for evaluating F at the point s (in the same way as for
algebraic polynomials [5]).

In order to consider piecewise polynomials, it is of interest to obtain
conditions on a smooth join of two polynomials at a single point. Our
next result gives these conditions in terms of polar forms of the respective
polynomials.

Theorem 4.8 (Contact of order m of two polynomials). Two polyno-
mials F, G # Dn have contact of order m�n at a point s # R, i.e.,

DkF(s)=DkG(s), k=0, ..., m,

if and only if their respective polar forms f and g satisfy

f ( y1 , ..., ym , s, ..., s)=g( y1 , ..., ym , s, ..., s),

for all y1 , ..., ym # R.

Proof. Without loss of generality, we may assume G#0 and s=0. Let
F # Dn be a function with the property

DkF(0)=0, k=0, ..., m.
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In case m=n, these conditions imply F#0 and hence the statement of the
theorem is trivially true. Therefore let m<n. By using representation (4.1),
it is not difficult to prove e.g., by induction on m, that F has the form

F(x)=d m+1(x) H(x),

where H # Dn&m&1 . Thus f is given by

f (x1 , ..., xn)=
1
n!

:
?

d(x?(1)) } } } d(x?(m+1)) h(x?(m+2) , ..., x?(n)), (4.7)

where the sum in (4.7) is taken over all permutations ?: [1, ..., n] � [1, ..., n].
If (x1 , ..., xn)=( y1 , ..., ym , 0, ..., 0) then for any ?, at least one of the
variables x?(1) } } } x?(m+1) is zero and thus the sum on the right-hand side
of (4.7) vanishes, proving that

f ( y1 , ..., ym , 0, ..., 0)=0, for all y1 , ..., ym # R. (4.8)

The opposite direction of the assertion of the theorem, while being trivial
for m=n, can be proved for m<n by showing e.g., again by induction
on m, that any polar form f satisfying (4.8) has the representation (4.7).
Moreover, by the chain rule, we observe

DkF(x)=
d k

dxk f (x, ..., x)= :
u 1 , ..., uk # [x 1 , ..., x n]

�k

�u1 } } } �uk
f (x, ..., x).

Differentiating each term in (4.7) partially with respect to u1 , ..., uk , k�m,
leads to a sum of functions each of which is a multiple of d(xi ) for some
i # [1, ..., n]. Thus for x1= } } } =xn=x=0, each summand vanishes and
the proof is complete. K

The following assertion is an analog of the well-known smoothness condi-
tion for the classical case of Bernstein�Be� zier curves. It is a straightforward
consequence of Theorem 4.8, (4.2), and the recurrence relation (3.4), and
can be proved by induction on m.

Corollary 4.9. (Cm-continuity conditions for polynomials in the
B-form). Let F and G be polynomials defined on the intervals [a, s] and
[s, b] with coefficients ci and di , i=0, ..., n, respectively. Then F and G have
contact of order m at the point s if and only if

di= :
i

j=0

cn&i+j Bi
j (b), i=0, ..., m,

where Bi
j are the B-polynomials with respect to the interval [a, s].
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Remark 4.10. It is well known that two polynomials join with C1-con-
tinuity if and only if three neighboring control points all lie on a line. In
our more general setting, using Corollary 4.9, one can prove a similar
result under the condition that the three control points (see the definition
below) lie on a curve of the form (x, g(x)), g # Ln . This has been proved
for Dn=Tn in [1].

Corollary 4.4 motivates the following

Definition 4.11 (Control points and control curve). Let F be defined
as in (4.1). The points Ci :=(!i , ci ), i=0, ..., n, will be called the control
points of F. Let gi , i=1, ..., n, be the unique functions from Ln , which inter-
polate the control points Ci&1 , Ci ; more precisely, define

gi (t) :=
d(n(t&!i ))

d(n(!i&1&!i ))
ci&1+

d(n(t&!i&1))
d(n(!i&!i&1))

ci , t # [!i&1 , !i ].

We call the curve C consisting of the pieces Gi :=[(t, gi (t)), t # [!i&1 , !i]],
i=1, ..., n, the control curve of F.

We are now ready to give a geometric interpretation of the Casteljau
algorithm for polynomials in the B-form. Suppose ck

i are the numbers
produced by the de Casteljau algorithm for a point x # [a, b]. For each
k=0, ..., n, and i=k, ..., n, let

C k
i :=(!k

i , ck
i ),

where

!k
i :=

kx+(n&i ) a+(i&k)b
n

. (4.9)

Thus in particular !0
i :=!i , i=0, ..., n.

Proposition 4.12 (Geometric interpretation of the de Casteljau algo-
rithm). For each k=1, ..., n, and i=k, ..., n, let

G k
i (t) :=(t, gk

i (t)), t # [!k&1
i&1 , !k&1

i ],

where gk
i is the unique function in Ln which interpolates ck&1

i&1 and ck&1
i at

!k&1
i&1 and !k&1

i , respectively. Then

Ck
i =G k

i (!k
i ), k=1, ..., n, i=k, ..., n.

In particular,

C n
n=G n

n(x).
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Proof. The function gk
i is given by

gk
i (t)=

d(n(t&!k&1
i ))

d(n(!k&1
i&1 &!k&1

i ))
ck&1

i&1 +
d(n(t&!k&1

i&1 ))
d(n(!k&1

i &!k&1
i&1 ))

ck&1
i .

With t=!k
i , this reduces to formula (4.6) and we have gk

i (!k
i )=ck

i . For
k=i=n, obviously !k

i =x. K

5. Splines

In this section we introduce spaces of piecewise polynomials, i.e.,
piecewise functions whose pieces are elements of Dn . Let z be a positive
number which satisfies the condition that if |x&y |<z and d(x&y)=0
then x=y. Such a number exists because the function d either has periodic
zeros or satisfies d(x)=0 if and only if x=0 (cf. Remark 2.2). Let

X :=[x0� } } } �xn+q+1]/R, q�n,

be a collection of knots, called a knotvector, satisfying

a=x0= } } } =xn , xq+1= } } } =xn+q+1=b

and

0<xi+n+1&xi<z, i=0, ..., q.

We shall be concerned with the spaces Dn, X of splines of degree n
associated with the space D and the knotvector X, defined by

Dn, X :=span[Bn
i ]q

i=0 ,

where Bn
i is the (normalized) B-spline of degree n, defined inductively by

B0
i (x) :={1,

0,
xi�x<xi+1

otherwise,

and for k=1, ..., n, by

Bk
i (x) :=

d(x&xi )
d(xi+k&xi )

Bk&1
i (x)+

d(x&xi+k&1)
d(xi+1&xi+k+1)

Bk&1
i+1 (x). (5.1)

If d (xi+k&1&xi )=0 and�or d(xi+1&xi+k+1)=0, then the corresponding
undefined terms in (5.1) should be set equal to zero. We will maintain this
convention throughout the remainder of the paper. Since the B-splines
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reduce to B-polynomials in the case q=n, we have employed the same
notation for both types of functions. In fact, all results of this and the sub-
sequent sections subsume the results of Section 4 in the case q=n.

It follows from this definition that the B-spline Bn
i is a locally supported

function with support [xi , xi+n+1]. Moreover, the results of this section
imply that for distinct knots, the B-spline is an n&1 times continuously
differentiable function. The recurrence relation (5.1) reduces to the classical
recursion for polynomials, trigonometric, and hyperbolic B-splines when Dn

is equal to 6n , Tn , or to the space of hyperbolic functions of degree n,
respectively [17, 19]. For a general space Dn , the relation (5.1) seems to
be new. Notice the term d(x&xi+k+1)�d(xi+1&xi+k+1) in (5.1) which
can be replaced by the more familiar term d(xi+k+1&x)�d(xi+k+1&xi+1)
only in the symmetric case (cf. Remark 2.2).

Remark 5.1. A more traditional way of defining the space Dn, X is to
consider the space of functions which belong locally to Dn and which have
prescribed degree of continuity at the knots. Using a standard approach
(see e.g., [17]) one can show that this definition and the one given above
are equivalent.

Henceforth, let Bn
i, j be the polynomial from Dn , which agrees with the

B-spline Bn
i , on the interval [xj , xj+1).

Lemma 5.2 (Recursion for the polar form of Bn
i, j ). The polar form bn

i, j of
Bn

i, j can be computed recursively by

b0
i, j=$i, j (5.2)

bk
i, j ( y1 , ..., yk)=

d( yk&xi )
d(xi+k&xi )

bk&1
i, j ( y1 , ..., yk&1)

+
d( yk&xi+k+1)

d(xi+1&xi+k+1)
bk&1

i+1, j ( y1 , ..., yk&1),

k=1, ..., n. (5.3)

Proof. If we set yi=x where xj�x<xj+1 , then equation (5.3) is the
same as equation (5.1). Induction can be used to show that in each variable
bk

i, j is in D and furthermore that bk
i, j is symmetric in the variables

y1 , ..., yk&1 . To show that bk
i, j is also symmetric in yk&1 and yk , first apply

(5.3) to each term on the right hand side of (5.3), then check the symmetry
for the two cases, d(x)=xe+x and d(x)=(e+x&e&x)�(+&&) (cf. Remark
2.1). K
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Theorem 5.3 (Polar form of Bn
i, j ). For xj<xj+1 and

j&n�k�j, (5.4)

the polar form bn
i, j evaluated at the knots xk+1, ..., xk+n , satisfies

bn
i, j (xk+1 , ..., xk+n)=$i, k . (5.5)

Proof. We proceed inductively on n. The case n=0 is just a restatement
of (5.2). If (5.5) is true for n&1 and k>j&n then a direct application of
(5.3) gives the result. If k=j&n, use (5.3) to eliminate xk+1. Thus after
rearranging terms we obtain

bn
i, j (xk+1 , ..., xk+n)=

d(xk+1&xi )
d(xi+n&xi )

bn&1
i, j (xk+2 , ..., xk+n)

+
d(xk+1&xi+n+1)
d(xi+1&xi+n+1)

bn&1
i+1, j (xk+2 , ..., xk+n).

Applying the induction hypothesis completes the proof. K

We now use Theorem 5.3 to prove that (5.1) produces smooth functions.

Corollary 5.4 (Smoothness of the B-spline). If xj<xj+1= } } } =
xj+n&m<xj+n&m+1 is a knot of multiplicity n&m>0, then Bn

i, j and
Bn

i, j+n&m have contact of order m at the point s=xj+1= } } } =xj+n&m .
That is, Bn

i is Cm-continuous at s.

Proof. Applying Theorem 5.3 to the polar forms of Bn
i, j and Bn

i, j+n&m

gives

bn&m
i, k (s, ..., s)=bn&m

i, k (xj+1, ..., xj+n&m)=$ij for k=j, j+n&m.

Next, by Lemma 5.2 we have

bn
i, j ( y1 , ..., ym , s } } } , s)=bn

i, j+n&m( y1 , ..., ym , s, ..., s).

Therefore by Theorem 4.8 we have the desired result. K

Next, we turn our attention to spline series of the type

F(x) := :
q

i=0

ciBn
i (x). (5.6)

The coefficients ci # R can be expressed in terms of the polar form
associated with F. Let fj be the polar form of the polynomial Fj , which
coincides with F on the interval [xj , xj+1).
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Corollary 5.5 (Dual basis for Dn, X ). For j=0, ..., q, the functionals
+j : Dn, X � R, defined by

+j F :=fj (xj+1 , ..., xj+n), (= } } } =fj+n(xj+1 , ..., xj+n))

form a dual basis for [Bn
i ]q

i=0 i.e.,

+j Bn
i =$ij , i, j=0, ..., q.

Corollary 5.6 (Spline coefficients in terms of polar forms). Let
xj<xj+1 and let i be such that j&n�i�j. Then the coefficients ci in (5.6)
can be computed as

ci=fj (xi+1 , ..., xi+n). (5.7)

Proof. Since Fj=� j
k=j&n ckBn

k, j , we have by (5.5)

fj (xi+1 , ..., xi+n)= :
j

k=j&n

ckbn
k, j (xi+1, ..., xi+n)=ci . K

We now provide a version of the well-known algorithm for computing
values of the spline F.

Algorithm 5.7 (Evaluation algorithm for splines).

Let m be such that xm�x<xm+1.

Set c0
i :=ci , i=m&n, ..., m,

For k=1 to n,

For i=m&n+k to m,

ck
i :=

d(x&xi+n+1&k)
d(xi&xi+n+1&k)

ck&1
i&1 +

d(x&xi )
d(xi+n+1&k&xi )

ck&1
i .

Then F(x)=cn
m .

Proof. As a consequence of Theorem 5.3, the symmetry and affinity of
fm and (3.5), we have

ck
i =fm(xi+1 , ..., xm , x, ..., x

k

, xm+1 , ..., xi+n+1),

which in turn gives

cn
m=fm(x, ..., x)=Fm(x)=F(x). K

A simple consequence of Corollary 5.6 is
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Corollary 5.8 (Marsden identity). For each y # R, we have

dn( y&x)= :
q

i=0

d( y&xi+1) } } } d( y&xi+n) Bn
i (x), x # R.

Proof. It is easy to check that the polar form of the function dn( y&x)
is >n

j=1 d( y&xj ). The result is now an immediate consequence of
Corollary 5.6. K

Corollary 5.9 (Schoenberg operator). Let Bn be the operator, defined
on bounded real-valued functions on [a, b], by

BnF(x) := :
q

i=0

F(!i ) Bn
i (x),

where !i are knot averages given by

!i :=
1
n

:
i+n

j=i+1

xj . (5.8)

Then Bn reproduces the space Ln (see (4.3)).

Proof. Using (4.5) and then Corollary 5.6, we get

BnF(x)= :
q

i=0

F(!i ) Bn
i (x)= :

q

i=0

f (xi+1 , ..., xi+n) Bn
i (x)

= :
q

i=0

fi (xi+1 , ..., xi+n) Bn
i (x)

= :
q

i=0

ciBn
i (x)=F(x). K

The operator Bn is an analog of the classical Schoenberg operator. For
Dn=Tn , this operator has been introduced in [11]. It follows from
Corollary 5.9 that the location of the points !i is the same as for the classi-
cal polynomial splines. On the other hand, Corollary 5.9 and the results of
Section 4 suggest that the notion of a control polygon as a piecewise linear
function is no longer appropriate. Namely, the ``control polygon'' should be
defined as the function interpolating the points (!i , ci ) and which belongs
piecewisely to the space Ln .

Definition 5.10 (Control Points and control curve). Let F be a spline
of the form (5.6). The points Ci :=(!i , ci ), i=0, ..., q, will be called the
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control points of F. The function C which interpolates the values ci at the
points !i , i=0, ..., q, and which is such that C | (! i&1, !i ) # Ln , i=1, ..., q, will
be called the control curve of the spline F.

Based on the above definition it is possible to interpret Algorithm 5.7
along the same lines as in the case of polynomials in B-form in Section 4.
For a more detailed treatment concerning the trigonometric case, see [12].

We conclude the section by giving an explicit representation for the
control curve C in terms of the polar form of an associated polynomial
from Dn .

Proposition 5.11 (Explicit representation for control curves). Let
x # [a, b] and 1�i�q such that x # [!i&1 , !i]. Moreover, let i�j�
i+n&1. Then

C(x)=fj (nx&xi+1& } } } &xi+n&1 , xi+1 , ..., xi+n&1). (5.9)

Proof. By definition of a control curve and by (5.7), C has the form

C(x)=
d(n(x&!i ))

d(n(!i&1&!i ))
ci&1+

d(n(x&!i&1))
d(n(!i&!i&1))

ci

=
d(n(x&!i ))

d(n(!i&1&!i ))
fj (xi , ..., xi+n&1)+

d(n(x&!i&1))
d(n(!i&!i&1))

fj (xi+1, ..., xi+n),

which on account of (5.8) and (3.4), with y1=xi , and y2=xi+n , readily
proves (5.9). K

Remark 5.12. It is possible to establish results analogous to the convex
hull property and the variation diminishing property of algebraic polyno-
mials. The case Dn=Tn was considered in [12] (see also [1]) and the
general case can be established along the same lines as in that paper.

6. Knot Insertion

In this section, X� will denote a refined knotvector of X i.e., X/X� and for
the remainder of the paper we will use bars to designate quantities
associated with X� . The spline F(x) in (5.6) can be expressed on the finer
knotvector X� as

F(x)= :
q�

i=0

c� iB� n
i (x),
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since clearly Dn, X is a subspace of Dn, X� (see Remark 5.1). In order to repre-
sent the new coefficients c� i in terms of the original ci , we need a representa-
tion of a B-spline Bn

i (x) as

Bn
i (x)= :

q�

j=0

;n
i, jB�

n
j (x),

which, by (5.7) yields

;n
i, j=bn

i, j (x� j+1 , ..., x� j+n).

This means that the coefficients c� j can be computed by

c� j= :
q

i=0

;n
i, j ci ,

which, on account of Lemma 5.2 leads to the recurrence relation

;k
i, j=

d(x� j+k&xi )
d(xi+k&xi )

;k&1
i, j +

d(x� j+k&xi+k+1)
d(xi+1&xi+k+1)

;k&1
i+1, j , k=1, ..., n,

where

;0
i, j={1,

0,
for xi�x� j<xi+1

otherwise.

The function ;n
i, j is an analog of the familiar discrete B-spline ([6, 17]).

The above recursions give rise to the Oslo algorithm for splines.

Algorithm 6.1 (Oslo algorithm).

Let 1�i�q� and let m be such that xm�x� i<xm+1.

Set c0
j, i :=cj , j=k&n, ..., k,

For k=1 to n,

For j=m&n+k to m,

ck
j, i :=

d(x� i+n+1&k&xj+n+1&k)
d(xj&xj+n+1&k)

ck&1
j&1, i+

d(x� i+n+1&k&xj )
d(xj+n+1&k&xj )

ck&1
j, i .

Then c� i=cn
m, i .

In the case of inserting one knot at a time, similar identities can be
obtained as in the polynomial case [2]. For the sake of convenience of
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the reader we include the main formulae. These results are given for
trigonometric splines in [12].

Theorem 6.2 (Recurrence relation for the new coefficients). Let
X� =(a, ..., xm , x, xm+1 , ..., b) be a refined knotvector formed by adding one
additional knot to X. The new coefficients c� i can be computed using the
following :

c� i={
ci , i�m&n

d(x&xi+n)
d(xi&xi+n)

ci&1+
d(x&xi )

d(xi+n&xi )
ci , m&n+1�i�m

ci&1 , m+1�i.

Proof. By appling Corollary 5.6 to X� , the new coefficients c� i can be
determined as

c� i={
fj (xi+1 , ..., xi+n),

i�m&n, i�j�i+n
fm(xi+1 , ..., xm , x, xm+1, ..., xi+n&1),

m&n+1�i�m
fj (xi , ..., xi+n&1),

m+1�i, i�j+1�i+n.

With these identities, the algorithm can easily be established. K

We finish this section by noting that, as in the polynomial case, by
inserting multiple knots into the spline curve such that every knot has
multiplicity n+1, the spline can be converted into a piecewise curve
whose individual pieces are represented in the B-form.

7. Subdivision

In accordance with commonly accepted terminology, by subdivision we
mean a representation of a spline function in terms of a refined basis. The
control points of the spline corresponding to that basis typically converge
to the spline as the number of refinement steps increases [5]. Knot inser-
tion serves as a natural method for subdividing splines. As more knots are
inserted into the spline, the refined control curves converge to the original
smooth spline curve. In this section we prove that the convergence is
quadratic. We first need an auxiliary lemma.
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Lemma 7.1 (Estimate for polar forms). Let [u, v] be an interval contain-
ing the points y1 , ..., yn # R. Then for every G # Dn there exists a constant K
depending on n, G and [u, v], but not on y1 , ..., yn , such that

|g( y1 , ..., yn)&G( y )|�Kh2,

where y :=( y1+ } } } +yn)�n and h :=max1�i, j�n[ | yi&yj |].

Proof. Expressing g in terms of a Taylor polynomial centered at
( y, ..., y) leads to

g( y1 , ..., yn)&g( y, ..., y )= :
n

i=1

�g( y, ..., y )
�yi

( yi&y)

+
1
2

:
n

i, j=1

�2g('1 , ..., 'n)
�yi�yj

( yi&y )( yj&y ),

where 'i=ty+(1&t) yi , i=1, ..., n, for some t # (0, 1). The first order term
on the right-hand side of the equation is zero since by symmetry of g, the
partial derivatives of g evaluated at ( y, ..., y) are all equal, and since
( y1&y )+ } } } +( yn&y )=0. Setting

K :=
n2

8
sup

1�i, j�n
' 1 , ..., 'n # [u, v], {}

�2g
�yi�yj

('1 , ..., 'n) }= ,

and using the inequality

|( yi&y )( yj&y )|�
h2

4
,

completes the proof. K

Theorem 7.2 (Convergence of the control curve). Let F # Dn, X be a
spline of the form (5.6) and C be its control curve. Moreover, let i=1, ..., q,
and x # [!i&1 , !i]. Then

|C(x)&F(x)|�K(xi+n&xi )
2, (7.1)

where the constant K is the same as in Lemma 7.1, with u=xi , v=xi+n , and
G=Fj , where j is such that x # [xj , xj+1].

Proof. By Proposition 5.11, we have

C(x)=fj (nx&xi+1& } } } &xi+n&1 , xi+1 , ..., xi+n&1).
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Setting G=Fj , g=fj and y1=nx&xi+1& } } } &xi+n&1 , y2=xi+1 , ..., yn=
xi+n&1 , in Lemma 7.1, and observing that y=( y1+ } } } +yn)�n=x, proves
(7.1), once we have shown

max
1�k, l�n

[ | yk&yl |]�|xi+n&xi |.

However, this follows directly from the fact that x # [!i&1 , !i] or, equiv-
alently, y1 # [xi , xi+n]. K

Remark 7.3. Theorem 7.2 generalizes the corresponding results
obtained by different means in [7] and [8] for polynomial splines, and in
[12] for trigonometric splines. As in [12], this theorem does not require
any assumptions about the smoothness of the spline F.

8. Examples

In this section we illustrate the results of the preceding sections with a
concrete example of a space D, which is the null space of the operator

L :=D2&3D+2.

Thus D=span[e2x, ex] and d(x)=e2x&ex. The relations (2.2) specialize
to

b0(x)=
e2(x&b)&ex&b

e2(a&b)&ea&b , b1(x)=
e2(x&a)&ex&a

e2(b&a)&eb&a .

For [a, b]=[0, 1], the functions b0 and b1 are displayed in Fig. 1.

Fig. 1. The functions b0 and b1 .
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Fig. 2. The four cubic B-polynomials.

Fig. 3. A cubic polynomial together with its control curve.

Fig. 4. The geometric interpretation of the de Casteljau algorithm.
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The corresponding cubic B-polynomials (n=3) are depicted in Fig. 2.
Figure 3 shows a typical linear combination of the B-polynomials together
with its associated control points and control curve. The curve corresponds
to coefficients c0=1, c1=1, c2=1, c3=0. The space D3 , to which this
function belongs, is the null space of the differential operator
(D&6)(D&5)(D&4)(D&3) and hence D3=span[e6x, e5x, e4x, e3x], a
space of exponential polynomials with equidistant exponents.

Figure 4 illustrates the steps of the de Casteljau algorithm for the evalua-
tion of the polynomial from Fig. 3 at x=0.35. For example, the coefficient
c1

2 is obtained as a D-affine linear combination of c1 and c2 , by

c1
2=f (x, 0, 1)=b0(x) f (0, 0, 1)+b1(x) f (0, 1, 1)=b0(x) c1+b1(x) c2 .

Similarly, c3
3 is a D-affine linear combination of c2

2 and c2
3:

F(x)=c3
3=f (x, x, x)=b0(x) f (x, x, 0)+b1(x) f (x, x, 1)

=b0(x) c2
2+b1(x) c2

3 .

The abscissae corresponding to these coefficients are obtained from (4.9).
Thus for example !1

2=0.45, and so C 1
2=(0.45, c1

2).
Figure 5 shows a cubic B-spline with uniform knots 0, 1�2, 1, 3�2, 2,

which is two times continuously differentiable (C2). Note the asymmetry of
the B-spline with respect to the midpoint of the interval [0, 2] which is a
consequence of the fact that the space D is not symmetric.

The geometric interpretation of the evaluation Algorithm 5.7 of a typical
spline is illustrated in Fig. 6. Note the resemblance with the de Casteljau
algorithm in Fig. 4. The parameters of the spline were chosen as follows:
n=3, x0= } } } =x3=0, x4=1�3, x5=2�3, x6= } } } =x9=1, and c0=2,
c1=2, c2=3, c3=2, c4=2, c5=0. Thus F is a cubic spline on the interval
[0, 1] with two interior knots. The evaluation algorithm is illustrated at the
point x=0.55. Since x # [x4 , x5), we have F(x)=F4(x)=f4(x, x, x)=c3

4 .
The spline coefficients involved in the computation of the value F(x) are
given in terms of the polar form f4 as

c1=f4(x1 , x2 , x3)=f4(0, 0, 1�3), c2=f4(x2 , x3 , x4)=f4(0, 1�3, 2�3),

c3=f4(x3 , x4 , x5)=f4(1�3, 2�3, 1), c4=f4(x3 , x4 , x5)=f4(2�3, 1, 1).

For example, Algorithm 5.7 leads to

f4(x3 , x4 , x)=c1
2=

d(x&1�3)
d(&1�3)

c1+
d(x)

d(1�3)
c2

=
d(x&x4)
d(x1&x4)

f4(x1 , x2 , x3)+
d(x&x1)
d(x4&x1)

f4(x2 , x3 , x4)
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Fig. 5. A cubic B-spline on a uniform knotvector.

and

F(x)=f4(x, x, x)=c3
4=

d(x&2�3)
d(&1�3)

c2
3+

d(x&1�3)
d(1�3)

c2
4

=
d(x&x5)
d(x4&x5)

f4(x4 , x, x)+
d(x&x4)
d(x5&x4)

f4(x5 , x, x).

The abscissa corresponding to the coefficient c1
2 is !1

2= 1
3 (x3+x4+x)r.29.

An example of knot insertion is given in Fig. 7. The knot x=0.55 is
inserted into the spline curve of Fig. 6 up to three times. As can be seen,
inserting the knot x a total of three times gives the value of the spline at
the point x. In fact, the control points in Fig. 6 are identical with the ones
obtained by knot insertion. In particular, comparing the last figure in
Fig. 7 with Fig. 6 gives C� 1=C1 , C� 2=C 1

2 , C� 3=C 2
3 , C� 4=C 3

4 , C� 5=C 2
4 ,

Fig. 6. The geometric interpretation of the spline evaluation algorithm.
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Fig. 7. Multiple knot insertion with full knot multiplicity.

Fig. 8. Uniform subdivision of a quadratic spline.
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C� 6=C 1
4 , and C� 7=C4 . Therefore the evaluation algorithm can be viewed as

a special case of knot insertion.
Finally, as Fig. 8 shows, as more knots are inserted into the spline, the

refined control curves converge to the original smooth spline curve. The
subdivided curve is a quadratic spline with knots 0, 0, 0, 1�10, ...,
6�10, 7�10, 7�10, 7�10 and coefficients 0, 1, 9, 1, 0, &1, &9, &1, 0. The
subdivision is achieved by inserting the new knots half way between the old
knots. The control curve corresponding to a refined knotvector clearly
converges quite rapidly to the spline function.
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